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Abstract me ground state of the one-dimensional half-filled Penson-KoIbHubbard model 
(with competing single-particle and pair hoppings in the presence of on-site Coulomb repulsion) 
has been investigated by a real space renormalization group method. The pound state energy, 
energy gap, local moment and sevetal correlation functions are sNdied to obtain the phase 
diagram. The phase diagram consists of a spin density wave (SDW) state, a superconducting 
(SC) phase and a quasimetallic phase dominated by short range SC correlations for positive 
values of the pair hopping amplitude; when this amplitude is negative, the phase diagram contains 
a near-metallic commensurate charge density wave and an SC phase of pairs with centre+f-mass 
momen” q = n apart from an SDW phase. 

1. Introduction 

The intervening years since the discovery of high-l; cuprate superconductors [ l ]  have 
brought a somewhat clearer picture of the essential characteristics of these systems. The 
parent (undoped) compounds are very good antiferromagnetic insulators, suggesting strong 
on-site Coulomb repulsion U. Neutron, muon-spin rotation and NMR experiments observe 
s = 4 local moments on the c u  sites with loss of antiferromagnetic correlations as the 
system is doped [Z]. Further increases in the hole concentration perturbs the system to 
favour the formation of Cooper pairs with coherence lengths of a few times the lattice 
spacing so that these pairs are weakly overlapping in real space; this is in marked contrast 
to traditional (E3CS) superconductors where the number of fermions within a Cooper pair 
is very large. The attractive (negativeut, with t the nearest-neighbour single-particle 
hopping) Hubbard model with its zero-range instantaneous attraction has been vigorously 
pursued [3,4] to describe the evolution of these systems from the Cooper pair regime to the 
Bose (composite boson) limit. The justification of such a model is heavily dependent on 
the elimination of local phonon coordinates, a situation that seems closer [5] to amorphous 
and highly disordered materials than high-T, systems. The fall of T, in this strong-coupling 
Bose regime ( lU l / t  >> 1) shows an incorrect dependence [6] on U / t  because a pure 
Hubbard-lie model becomes classical in this limit; its applicability in this region thus 
becomes questionable. The simplest way to overcome this impasse is to use a non-local 
pairing interaction. The physics of these systems in the dilute ‘pair’ limit would then be 
decided primarily through the competition between single-paaicle hopping and localized- 
pair hopping (rather than pair-pair interactions), the so-called Penson-Kolb model [7]. A 
relatively less studied model embracing these basic features thus corresponds to the Hubbard 
generalization [SI of the Penson-Kolb Hamiltonian 
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with the pairing V-term quadratic in on-site singlet pair creation (destruction) d/ = U ! + U / ~  

and p is the chemical potential: (ij) represents nearat-neighbour sites on an N-site lattice. 
The relevant parameter space of the high-i', systems requires U, V > 0. The non-local 
nature of V gives geater pair mobility and renders the present model essentially different 
from the negativeU-t Hamiltonian. As distinct from the contentious issue of the origin of 
the pairing mechanism, this phenomenological modelling of the pairing process has the merit 
of admitting different ground-state orderings in the parameter space. One can then go back 
to experiments for comparison and thereby identify the appropriate parameter space of these 
systems. A continuation of this phenomenology (postulation of unusual pairing mechanisms) 
is necessary before one can hope for a complete theory of high-T, superconductivity. 

It is notable that the pair-hopping term in the Hamiltonian (I), though introduced 
phenomenologically, is derivable from a two-body interaction term in a general tight-binding 
Hamiltonian [9]. The general interaction term (ijlljrlkl) referring to the matrix element 
between Wannier orbitals located at sites i, j,k,! gives rise to the on-site term U for 
i = j = k = I .  Similarly for i = j and k = I this matrix element gives the V term. 

The ground state (determined by U/t, V/t) properties of the half-fdled ( p  = U / 2  
by particle-hole symmetry) onedimensional (1D) Penson-Kolb-Hubbard (PKH) model 
was studied by Hui and Doniach 181 (hereinafter referred to as HD) by both momentum- 
space renormalization-group (RG) and finite-size (exact diagonalization of finite-size cells) 
methods. The present work is concerned with some issues (detailed later) that remained 
unresolved in the HD approach. Heuristic arguments, based on exact solutions of the limiting 
cases (U-t and U-V models) and exact weak-coupling (U - V << t )  results discussed 
in HD, indicate four types of ground state in the ( U / t ,  V/t) phase plane: spin density 
wave (SDW), charge density wave (CDW), weak-coupling (BCS-type) and strong-coupling 
superconducting states (WSC and SSC). The phase boundaries, three of which were realized 
by the finite-size calculations (SDW/CDW, SDW/SSC and CDW/SSC), meet at a tricritical 
point ( t ,  U. V) - (1, 13.5, 10.5). The continuum model RG (weak-coupling expansion) of 
HD fails to reproduce the hicritical point and generates two additional unphysical phases: a 
CDW phase in the SSC region (t << U e 4V/r)  and a phase boundary in the intermediate- 
and strong-coupling regimes implying a transition in the Hubbard (positiveU-t) model. 
Apart from these inconsistencies (noted by HD), one expects the tricritical point to be 
in the intermediate region (t  - U - V) where all three (r, U, V) processes of the PKH 
model compete on an equal footing, but the finite-size calculations place (U, V) an order of 
magnitude above f. Moreover, the weak-coupling region where RG of HD can be trusted 
displays an SC phase not detected by the finite-size calculations. Clearly finite-size effects 
are very much there and if a CDWdominated region does exist, it should be in the region 
U - V << t rather than what HD observe. With these few observations, we proceed to 
explore the basic qualitative features of the PKH model for both V > 0 and V < 0 by using 
a simple ground-state real-space renormalization group (RSRG) method. This particular 
technique is known to reproduce the basic features of the ground-state properties of the ID 
Hubbard model quite successfully. It can predict a metal-insulator transition at U / t  = 0 
and an antiferromagnetic SDW correlation in the insulating phase for half-filling [lo, 1 I]. 
There is a sharp rise in the q transform of the SDW correlation around q = r 1101 for large 
values of U which bears the signature of the well known non-analytic behaviour of the 
correlation function near q = ZF (where the Fermi momentum kF = n/2 for half-filling). 
It is, therefore, of interest to know the extent to which this approach (within a first-order 
theory) is able to capture the essential aspects of the ground state of the PKH model without 
bringing in the unphysical phases referred to above. 

B Bhanachnvya and G K Roy 

(di = aipit)  operators: a$ (ai.,) are fermion operators, the number operator nj, = ujouio t 
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2. RSRG equations 

The present Hamiltonian has several symmetries apart from the particbhole symmetry (for 
half-filling) mentioned earlier. The total spin S, the z-component S, of the total spin and 
the total number of particles U are conserved quantities. The model also possesses a spin- 
reversal symmetry in the absence of a polarizing field. We shall be using these symmetries 
in constructing the RG formalism. 

In the present RG scheme [lo, 111 the lattice is partitioned into three-site blocks. The 
block Hamiltonian is then diagonalized exactly. Only four low-lying states in the subspaces 

are retained. These are identified with the renormalized IO), I t), I J.) and I fl) states 
respectively. Of these the first and fourth are connected by particle-hole symmetry while 
the second and thii are connected by spin-reversal symmetry. The inter-block part of the 
Hamiltonian is then renormalized within this truncated basis to yield the following first-order 
RG equations: 

I 1 {S = S, = 0,  U = 21, {S = S, = 5, U = 3). (S = -Sz = 2, U = 3) and {S = S, = 0, U = 4) 

U' = U + 2(Ez - E3) V' = (4.22 + &3a4)' V 

where Ez and E3 are the lowest eigenvalues, and (a,, az, a3, a) and (bl, 9, b3) are the 
corresponding eigenvectors of the matrices 

0 J z t  0 0 

0 2t -Jzv U 

M3= A t  U - V  At 
0 &t 0 M * =  ( 0 J z t  U 

respectively. MZ and M, are the irreducible parts of the block Hamiltonian containing the 
lowest eigenvalues in the subspaces U = 2 and U = 3 respectively. These recursion relations 
relate the renormalized parameters (U', V'. t ' )  at the nth stage with the previously obtained 
iterated values. 

We have computed the ground-state energy per site E from the relation [lo] 

Ua 

E = C(E.f) - 2 / ~ " ) ) / 3 "  + U / 2 .  
n=1 

The local moment L, defined by L = {e), can also be computed recursively from 

L = $a: + (b: + 6: - ai)L'. 

We also compute the q-transform of the spin-spin, density-density and pair-pair 
correlation functions to study SDW, CDW and SC orderings. Such correlation functions 
are defined as 

C(q) = N-' z ( A f A , )  exp[iq(Ri - R,)] 
i j  
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where Ai = (ni+-ni4), ( l - n i t - n i ~ . )  or di for SDW, CDW and SCcorrelations respectively; 
Ri refers to the position of the ith site. Recursion of such correlation functions is fairly 
straightforward [IO]. The recursion relations are of the general form 

B Bhanacharyya and G K Roy 

C(q) = + B(q)L' + y(q)C'(3q) (3) 

where a@), p ( q )  and y(q )  are quantities depending on q, U / t  and V / t .  The explicit forms 
of these quantities in terms of ai and bi are given in the appendix. 

6.0 

+- 
>4.0 SOW 

3. Phase diagram 

The phase diagram in the ( U / t ,  V / t )  plane of figure 1. is constructed from the trajectories 
of the running coupling parameters (U'/t ' ,  V' / t ' )  appearing in the recursion relations of (2). 
The nature of ordering in a particular phase is obtained by studying appropriate correlation 
functions, energy, energy gap and local moment. For V 0 the phase diagram consists 
of an antiferromagnetic SDW phase, a superconducting (SC) phase and a nearly metallic 
phase with short-range superconducting (SRS) correlations. In the case V c 0, there appear 
a quasi-metallic commensurate CDW phase and an q-paired (pairs with centre-of-mass 
momentum x) SC phase (q-SC) apart from an SDW one. 

o : Tricriticoi Point 

* : Fixed Point 

SOW - 
(A : SRS) 

2 . 0 1  ;;\I/, ,sc, ~, , ~ I I ~ 

0.0 
-5.0 -3.0 -1.0 1.0 3.0 5.0 7.0 9 

V/t  
Figure 1. Phase diagram of the ID PKH model for half-filling. The enclosed region marked 
'A' shows the SRS phase. SDW spin density wave; CDW: charge density wave; SRS quasi- 
metallic phase with short-range pairing "elation; S C  superconducting phase; q-SC n-paiixd 
SC phase with pairs of centre-ofmass momentum 1. 

Any point in the SDW region flows into the stable fixed point (c(1,O) under RG Iterations. 
Points in both the SRS region and the CDW region go to the stable fixed point (-00, 0) 
under RG flow. On the other hand, the points in the SC regions flow to (--CO, m) or (-00, 

-w) for V > 0 or V c 0 respectively (figure 2). 
The SDW boundary is the line of zeros of the energy gap U, (the limiting value U' 

reaches after infinite iterations while t' and V' separately go to zero). The SDW region 
(U, > 0) is characterized by the opening of a singleparticle excitation gap in the charge 
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Figure 2. RG Row diagram of the ID PKH model For half-filling x the unsrable FP (fixed 
point) on h e  SDW boundancs o' rwblc he-femuon FP 31 (0.0). 

sector, while below this boundary a gap in the spin sector (U, < 0) emerges. That 
the region where Um 0 corresponds to an SDW phase is evident from the plot of the 
SDW correlation C ~ D W ( ~ )  against U / t  (figure 3). csDW(q) increases to large values for 
q = IT in this region (for both V > 0 and V < 0) implying an antiferromagnetic order. An 
unstable fixed point (marked *) appears at Y (6.448,6.930) on this boundary for V > 0, the 
linearized RG matrix having eigenvalues (1.524,4.586) with eigenvectors (0.825,0.645) and 
(0.822, -0.570) respectively. the latter defining two critical surfaces near this point on the 
SDW lie.  For V < 0, a similar unstable fixed point (Fp) appears on the SDW boundary at 
N (3.145, -3.617) which also separates two critical lines on this SDW boundary (figure 1). 
The metallic critical l i e s  extend from the unstable Fps to the free-fennionic stable FP (0.0); 
all points on the two metallic critical lines flow to (0, 0) under RG iterations. The other 
part of the SDW line, beyond the unstable FP, flows to the stable FP (CO, CO) or (CO, -CO) 

for v > 0 or v < o respectively with ~ / l v l  4 4 4 5  (4 IT, the exact value). This 
follows from (2) by setting U > [VI and letting t + 0. 

In the enclosed regions below the SDW boundary, namely the SRS and the CDW phases, 
the gap IU,l 2 0 (figure 4). This shows the nearly metallic nature of these phases in which 
single-particle hopping dominates over pair hopping with V/# scaling to zero. Comparing 
the SC and the CDW correlations, Csc(q) and cCDW(q), we find that the difference 

D ( U / t ,  V/t) = 2Csc(q = 0) - C C D W ( ~  = IT) > 0 

throughout the SRS region (the factor 2 before CSC arises because d!, di and (ni+t-ni& - 1)/2 
form a spin algebra); the equality holds only at (0, 0). Figure 5 illustrates this comparison 
for U = 0; identical remarks apply in this region for other U values. There is no SC 
ordering in the SRS zone as it is a single-particle-hopping-dominated region. Such a quasi- 
metallic phase with short-range pairing correlations also shows up in a Gutzwiller variational 
approach [12], but it does not come out of the finite-size calculations of HD. On the other 
hand, there is CDW ordering in the negative-V sector; C c ~ w ( q  = IT) dominates over 
other correlations, rapidly increases as the CDW/q-SC boundary (on which it peaks) is 
approached and then decays quickly in the q-SC zone (in contrast to its behaviour in the 
SC region where it never acquires appreciable values compared to the free-fermion value). 
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16.0 I 

0 

Figure 3. plots of the SDW correlation functions Csow(q = x )  against L l f f  for different V f t  
( t  = 1 .a), 

-8.0 
-4.0 -2.0 0.0 2.0 4.0 6 

V/t  
Figurel if- againsf V f t  paramevized by i f f t  (f = LO). The iali of 
the V c 0 sector compared to thaf in the V > 0 region. 

is much sharper in 

It may, however, be noted that since the CDW region is bounded, the ordering in it is 
never complete as distinct from the SDW and SC phases in the large U / t  and IVl/t limits 
respectively. 

It is very striking that for both the CDW and SRS phases the RG flow goes to the 
negative-U Hubbard FP (-W. 0). The negativell Hubbard model possesses degenerate 
CDW (q = x )  and SC (q = 0) channels for half-filling 141. But in these two regions of 
the PKH model (which flow to the same FP under RG) this degeneracy is removed and 
in ways opposing each other. The reason behind this is the short-range pairing fluctuation 
competing with the singleparticle hopping t .  This effect enters the RG calculations though 
the first few iterations necessary to get rid of the pair hopping amplitude V to reach the FP 
(-00,o). It is also very interesting to observe the sharp difference in the effect of V in the 
two regimes V > 0 and V < 0. This indicates that the nature of the competition between 
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) 

Figure 5. Comparative plots of CDW and SC Correlation functions: CcDw(q = x) .  
2Csc(q = 0) and Z&(q = n) against V l t  for U l t  = 0. 

-1.0 

, 
Figure 6. Plots of (a) the ground-state energytsite E 
and (b) the local moment L against V l t  for different 

ash;upMlinthelocalmoment.signallingtheonsetof 

W --. 

U=l 
uft (t = LO). The peal; in the energy corresponds to -2.5 

-4.&3.0-2.&1.00.0 1.0 2.0 3.0 4.0 
V/t the composite boson phase. 

V and f in the SRS phase is different from that in the CDW phase. In fact, this becomes 
evident from the plot of the ground-state energy (per site) E against V l t  (figure 6). The 
energy curve is asymmehic around V = 0. It is noticeable that the V term favours the 
band effect to lower the energy in the V > 0 sector, i.e. in the SRS phase. On the other 
hand, for V < 0, the pairing term increases the energy (compared to that for V = 0) by 
opposing the single-particle hopping. This gives rise to the fact that U l t  scales to infinity 
much faster in the SDW phase of V < 0 sector compared to that for V = 0 case; however, 
this rate is slower for the V > 0 SDW region. This is why, in the SDW ordered phase, we 
find that C s ~ w ( q  = x )  for V < 0 takes larger values than that for V = 0 while the V > 0 
curve lies below it (figure 3). 

As the SC region (V > 0) is approached across the SRS/SC boundary, the pair hopping 
mechanism begins to dominate over the single-particle hopping since V / r  + 03 under RG 
iterations (figure 2). U, suddenly takes on large negative values (whose magnitude gives 
the gap in the spin sector; figure 4) indicating the formation of tightly bound pairs. It is 



5544 

found that the pairing correlation &(q) blows up in this phase for q = 0 (figure 7) as 
V / t  + CO; other q values give vanishingly small contribution. This indicates an SC pairing 
out of pairs with centre of mass at rest. 

B Bhactacharyya and G K Roy 
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Figure 7. SC correlation functions c ~ ( q  = 0) against V / t  for different U/t (t = 1.0). 

3 

A similar situation occurs as we move inside the q-SC region across the CDWIq-SC 
boundary: V / r  + -m. Consequently the pairing correlation Csc(q) starts dominating 
over the CDW correlation. But the role of the pairing interaction is distinctly different from 
that in the V > 0 case, as noted earlier, &(q) takes on large values (figure 8) for q = II 
(instead of q = 0 for V > 0). This kind of pairing with centre-of-mass momentum q = rr 
is often referred to as q-pairing [13]. In the present context, it is not a surprising result. 
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The q-transform of the pairing term. -2V cos(q1 + 42) where q, and 42 are the momenta 
of the interacting electrons. has a maximum negative value when q1+ 42 = K for V < 0. 

The three phase boundaries meet at a tricritical point for both V > 0 and V c 0; for 
V > 0 this hicritical point is at lz: (t  : l .O, U :3.0, V :3.85) while for V < 0 it is at N (t  :LO, 
U :3.0, V : -3.51). It is notable that f, U and V are of the same order of magnitude at the 
tricritical point as expected (this was not so in the results of HD). Moreover, the absolute 
values o f t ,  U and V are nearly same for both V > 0 and V < 0. 

The phase transitions from a near-metallic state to an SC phase are different in nature 
for positive V and negative V. For V > 0, we find that this transition corresponds to 
the development of long-range order in some particular correlation (e.g. the q = 0 SC 
correlation jumps across the SRS/SC boundary). The variation of the local moment across 
this transition (at V / t  N 1.04 for U = 0, the so-called Penson-Kolh point) is also quite 
smooth (figure 6). In fact it is hard to detect this transition without refemng to the RG flow. 
But the transition in the negative-V sector is clearly accompanied by a change in the nature 
of ordering (e.g. from CDW to an q-paired SC). The local moment also shows a sharp fall 
at this transition (figure 6) which, for U = 0, takes place at V / t  N -1.65 (note that the 
energy curve peaks exactly at this point). This particular behaviour in the local moment 
plot shows that the evolution of the SC phase towards a hard-core boson phase (of tightly 
bound pairs) is gradual for V > 0; within the SC phase the weights of the configurations 
containing single occupancies in the wavefunction decrease asymptotically with increasing 
V/t. In contrast, one reaches the hard-core boson regime immediately after crossing the 
CDW/q-SC boundary for V < 0. This feature was present in the field theoretic analysis of 
AWeck and Marston 1141 who concluded that a true pairing transition occurs only in the 
negative-V sector of the Penson-Kolb model (the PKH model without the U term). 

4. Conclusion 

In conclusion, we have studied the ID PKH model for half-filling using a real-space RG 
technique for both V > 0 and V < 0. This technique uses a repeated renormalization 
of a product wavefunction incorporating exact solutions of the model in a three-site cell. 
Therefore, in contrast to the weak- and strong-coupling expansions, the method is expected 
to work reasonably well over the entire regime of the parameter space. Moreover, this 
approach incorporates fluctuations beyond the mean-field analysis which is essential for the 
study of low-dimensional systems. It is well known that this method suffers from the fact 
that the renormalization of the off-diagonal quantities (e.g. t or V) are not very accurate 
(within the framework of first-order RG [ l l ] )  and the reason behind this has recently 
been addressed [15]. But apart from its quantitative precision, this technique succeeded in 
bringing out the essential qualitative features of interacting fermion models [lo, 11,161. 

We find that the phase diagram for the PKH model consists of an SDW phase, an SC 
region and a quasi-metallic phase with short-range SC correlations for V > 0 while for 
V < 0 it contains an q-paired SC and a near-metallic CDW phases besides an SDW phase. 
Also the local moment and the ground-state energy computed from the RSRG provide some 
interesting information about the competition between the two distinct hopping processes. 
It is worth noting here again that the unphysical phases (referred to in section 1) generated 
by the momentum space RG in the intermediate to strong-coupling regime are absent in 
the present approach. It is thus expected to work better in this regime where the high-T, 
superconductors are likely to reside [3]. 

We believe it would he worthwhile to study the convergence property of the present 
approach as a function of block size; this should be faster than finite-size calculations for 
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the simplest one (three-site cell) has revealed the essential properties of the PKH model. 
Identification of the appropriate order parameter for the SRS phase would constitute definite 
progress; if such an order parameter does exist, its corresponding correlation function should 
dominate in the SRS phase and then decay on entering the SC region. The nature of 
elementary excitations in the different phases may help in this matter. Finally, this study 
needs to be extended to higher dimensions for comparison with experiment. 

B Bhattacharyya and G K Roy 
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